英国·威廉希尔(williamhill)中文官方网站
ENGLISH
|
集团首页
公司主页
关于我们
威廉希尔williamhill简介
现任领导
组织机构
联系方式
团队队伍
教授
副教授
讲师
党委行政
退休职工
科学研究
研究中心
数苑博雅讲座
数苑经纬讲坛
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
公司产品
公司产品动态
研究生专业方向
公司产品方案
党建园地
党建动态
数公司党校
员工工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
员工动态
员工动态
人才招聘
科学研究
研究中心
数苑博雅讲座
数苑经纬讲坛
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
公司主页
>
科学研究
>
学术报告
> 正文
A Statistical Hypothesis Testing Framework for Data Misappropriation Detection in Large Language Models
发布时间:2025-06-18 来源:威廉希尔williamhill 浏览次数:
Speaker:
张林俊
DateTime:
6月20日(周五)上午10:00 - 11:00
Brief Introduction to Speaker:
张林俊教授,美国罗格斯大学
Place:
新文科楼403会议室
Abstract:
Large Language Models (LLMs) are rapidly gaining enormous popularity in recent years. However, the training of LLMs has raised significant privacy and legal concerns, particularly regarding the inclusion of copyrighted materials in their training data without proper attribution or licensing, which falls under the broader issue of data misappropriation. In this article, we focus on a specific problem of data misappropriation detection, namely, to determine whether a given LLM has incorporated data generated by another LLM. To address this issue, we propose embedding watermarks into the copyrighted training data and formulating the detection of data misappropriation as a hypothesis testing problem. We develop a general statistical testing framework, construct a pivotal statistic, determine the optimal rejection threshold, and explicitly control the type I and type II errors. Furthermore, we establish the asymptotic optimality properties of the proposed tests, and demonstrate its empir...
上一条:
信息论与编码理论
下一条:
人工智能与定理证明